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Some criteria of existence of a sector for a system of equations of perturbed motion are 

cited. These criteria are then used as a basis for deriving several new theorems falling 

within the context of the second method of Llapunov. 

Let us consider the system of differential equations 

dt, / dt = f, (t, Xl, ***, 2,) (s = 1, 2, *..., n) (1) 

whose right sides are continuous in the domain 

(h)t > 0, I[~11 = 1/q" +... + x,,~\( A 

and fs (t, 0, 0, .,.: 0) E 0. 
We shall use the symbols a,, . . . , a,, to denote quantities of which each one can 

assume either of the two values 1. -1. 
i,et the indicated parameters take on some fixed values a, = as,,, (s = 1, 2, . . ., n) 

and let us denote by K0 {ars, . . ., a,,} the set of all those points (t, x1, . . . . 5,)~ h 
for which none of the coordinates x, # 0 and 

sign z, = o&0 (s = 1,2,. . . ( n) (2) 

We shall say that the numbers a,,, . . . . a,, themselves form the basis of the region 
K o under consideration. 

The set o {a,,, . . . . a,,} of all those boundary points of the region K,, {CC,,, . . . . 

. . . . a,,} for which one or several coordinates X~ = 0 shall be called a side surface 
of this region and we set 

K {a,,, . . . . a,J = K,, {al,, . . . . a,,,} u CJ {a,,, . . . . ano) (3) 

If the domain h is defined by the inequalities 

t 2 0, llzll (00 (4) 

then the set K {a,,, . . . . a,,} associated with some basis {a,;} is a “cone”. 

Definition 1. We say that the right sides of system (1) in the domain K {a,,, . . , 
. ..) a,,} “have the property of preserving the signs of the elements of the basis (a,,} ” 

if the following inequalities are fulfilled at the points of the side surface o {a,,, . . . , 

. . . . a,, ): %Ofs (t, Xl, . . . x5-1, 02 xs 1, . . . I,,) >o (s =I, 2, . . . , n) (5) 
De fi II i t io n 2. Let ‘v (t, x1, . . . , z,) be some Liapunov function. We call this 

function “positive-definite” in the domain K {a,,, . . ., ano} if there exists a function 

0 (Xl, . . . s,) independent of t and positive-definite in the domain h such that the 

inequality 3 > (I) is fulfilled at all points (t, 21, . ..? X,) ~75 K {CC,,, . . . . a,,}. 

The proof of the following statement is similar to the proof of Lemma 4.1 in p]. 

Lemma 1. Let the right side of system (1) in the domain K {alo, . . . . a,,} have 
the property of preserving the signs of the elements of the basis {a,,}. 

At least one solution of this system which for all t > t, either remains within the 

domain K {alo, . . . . a,,} or can leave it only by way of points of the surface 

209 



210 S. K. Persidskii 

t > 0, II x II = A f(i) 

then passes through any point (to, xlo, . . . . x,J E K, {a,,, . . . . a,,} . 
Lemma 2. If the conditions of Lemma 1 are fulfilled, if the domain h is defined 

by inequality (4). and if the solutions of system (1) are unique, then the corresponding 

domain K {c.Q~, . . . . ccno} is a positively invariant set for this system. 

For example, in the case of the system of linear equations 

ds,/dt=P,1(t)sl+...+p,(t)2, (s=1,2*...*n) (7) 

with continuous coefficients the domain K {alo, . . . . ano) is a positively invariant set if 

the basis (,asd} and the coefficients of the system are related by the expressions 

P,&&,>, 0 for S + k (s, k = 1, 2, .,., n) (S) 

for all values of t > 0. 

It is easy to see that the cone K fi- al,,, . . . . - a,,) is also a positively invariant set 

in this case. 

Specifically, if psk (t) > 0 for s #= k, then system (7) has the two positively invariant 

sets K {I, 1, . . . . 1)and K (-1, - 1, . . . . -I} ; this result agrees with p]. 

We note that fulfillment of the conditions of Lemma 1 means that the corresponding 

domain K (are? . . . . a,, } is a sector [L-L], so that this lemma can be used to construct 
certain criteria of instability. 

For example, we have the following theorems. 

Theorem 1. Let the right sides of system (1) in the domain K {a,,, . . . . a,,} 
have the property of preserving the signs of the elements of its basis, and let the inequa- 

lity 

where 

be fulfilled at points of the domain K {a,,, . . . . a,,} for certain real constants Ar,.., 

. . . . A, among at least one A, > 0.. The function W in the above inequality is 

positive-definite in the domain in question. 

The zero solution of system (I) is then unstable. 
Theorem 2. Let the elements of some basis {a,,} and the coefficients of system 

(7) be related by expressions (8) for t > 0 . 
The existence of real constants Cl, . . . . C, (at least one of which is a number cl larger 

than zero) satisfying the inequalities 

i IPh.i(t)ICi;-tpj~(t)c,~F(t)>,O (9 = 1,2,. . . , n) PI 
7i=l 

where (K#S) I 

lim F(r)dt = 00 c i-r.s ; 

then implies that the zero solution of the system in question is unstable. 
Theorem 3. If the elements of some basis {a,,} and the coefficients of system 

(7) satisfy inequalities (8) for t > 0 and if the relation 



The stability of solutions of systems nf differential equations Sll 

t 

lim s t-Go @ 
pss (‘c) d-c = 00 (~0) 

is fulfilled for at least one of the diagonal coefficients pas (t} of this system, then the 
zero solution of system (7) is unstable. 

These theorems can be readily proved with the aid of Liapunov functions expressed as 

certain linear forms. 
For example, to prove Theorem 3 we can set 

The function v is then larger than zero at the points of the set Ko(aXo, . . . . a,&, and 

its total derivative in the domain K {cc~~, . . . . a,,) satisfies the inequality 

t 
d =a,exp (- 1 P,, (%I & ) (Pa (4 21+ a*’ + P,, s-1 @I s-1 + 

0 

by virtue of system (‘7). 

+ Ps, St1 (4 zs+1 + -*a + Pm (4 “n) >o 

Thus, all of the conditions of a certain theorem on instability with a sector formulated 

in [3] are fulfilled for the system just considered here. 
Now let us consider the system of linear differential equations 

(Ix,~CI~--p*~x~+..*+~snx, b=h‘&...,n) (Q) 
whose coefficients are real constants. 

Lemma 3. Let the coefficients of system (12) and the elements of some basis{U,o} 
be related by expressions (8). 

Then all the roots of the secular equation 

det I/ Psk - h6sk ii = 0 W 

have negative real parts if and only if all the numbers 4, . . . . b, determined from 

the system ?I 

2 PksakObk = - %o% (s=l,Z,...,n) (l4) 
k=l 

are positive for all positive a,, . . . . a, . 
Necessity. Let all the roots of Eq. (13) have negative real parts. Then the deter- 

minant of system (14) A=alo...a,odetIfpsefl#U 

From (14) it follows that none of the numbers bg + 0. Let us assume that at least one 
of the quantities b, < 0. Then the function v would satisfy, by virtue of system (12). all 
conditions of Liapnnov’s first instability theorem at points of positively invariant set 
K {a,,, *‘ f Sol while the null solution of this system is asymptotically stable. 

Sufficiency and the following lemma are proved analogously. 

Lemma 4. Let the coefficients of system (12) be such that inequalities (8) are 

fulfilled for some basis {cx,~} and det 11 psk 11 # 0. 
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Equation (13) then has at least one root with a positive real part or roots with real 

parts equal to zero such that the number of groups of solutions corresponding to these 
roots is smaller than their multiplici~ if and only if there exists at least one negative 

number b, determined from system (14). 
If relations (8) are fulfilled, the system (14) can be written as 

2 1 pks f b, + pmbs = - a, (s = 1, 2, . . .v n) (43) 
k=l 

(k#S) 

The above lemmas readily yield several theorems on stability 

system of equations 

CJX, / at = PIl(pl (t, $1, *s-t &I) c *** + Pm% (4 

(s = 1, 2, . . . . n) 

and instability for the 

Xl, . . . . x*) 

($6) 

where psk are real constants, where the functions cps are continuous in A, and where 
(p* (t, 0, 0, . . . . 0) = 0. 

Theorem 4. Let the following conditions be fulfilled in the domain K {ala, -. + I 

. . . . %d : 
1) the right sides of system (16) have the property of preserving the signs of the 

elements of the basis (a,,}; 
2) for certain positive constants A 1. . . . , A n, 

2 AsasOcPs(tr51..;,Zn)~~h(t)l/t7(tt21,...,1,) (17) 

s=1 
where 1 

h(i)>% lim 5 ~(~~~~~ -- 00 
t-S0 

0 

and w is a positive-definite function in the domain K {a,,, . . . . a,,}; 
3) the elements of the basis {a,,} and the coefficients of the system are related 

by expressions (8). 
If Eq. (13) does not have roots equal to zero but has either at least one root with a 

positive real part or roots with real parts equal to zero such that the number of groups 
of solutions corresponding to these roots is smaller than the multiplicity of the latter, 

then the zero solution of system (16) is unstable. 

To prove the theorem we determine the constants B1, . . . . B, from the system of equa- 
tions 

i Pks’E;O = ‘~0 As (S = I) 2, .,., n) (1s) 
k--l 

and set i?. 

v (21, . ..) ZJ = 2 BSa,O”S ( I !J) 

s=l 

Lemma4ir #es that at least one of the numbers B, > 0, so that the form I’ is able 
to assume positive values in the domain K (al,,, . . . . ano! ; moreover, 

at the points of this domain, 
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Let us suppose that the zero solution of system (16) is stable. Then for any number 
e > 0 (& < A) there exists a number 6 > 0 such that none of the integral lines of sys- 
tem (16) which lie on the sphere 11 z Ii= 6 for t = 0 reach the sphere [I z I/ = E for 
anyt>/O. 

Let us choose a point (0, x1, . . . . zn) E K, {alor . . . . ano} on the sphere II I I{ = 6 such 
that V > 0 and consider the integral line of system (16),namely 

2s = % (4 (s = 1 2 s % I .“, n) wt 

which passes through this point and (by Lemma 1) does not intersect the side surface 

0 {a,,, .*+1 %of for any t >, 0. We infer from (20) that the integral line in question does 

not have points in common with a certain sufficiently small neighborhood h, of the 

origin defined by the inequalities t > 0, )I z 1) < GC, (O<a < S). But the function 

w (t, 51, a**, ~~3) >, B > 0 (where fi is some sufficiently small number) at the points of 
the set K p+,, . . . . %&&* This implies that the inequality 

must be fulfilled along solution (21) for all t > 0 . The latter inequality is definitely 
invalid for sufficiently large t. 

Let us be given a system of equations 

dX,)cG = P&l (X*. . . .I X,) -t . . * + PsnlP* (XI, * * et Xn) + RS (XI? - * ‘? 4 

(s = 1, 2, * . .) n) (22) 
where Psh are real constants, ~l$ are polynomials in the quantities x1, . . . , x, of degree 

not higher than N > 1, and rpS (0, . . . . 0) = 0 ; the functions R, can be expanded 
in some neighborh~ of the origin in powers of Xl, ***, X, (the leading terms of the 

series are of order not lower than N + 1). 

Theorem 5. Let the right sides of system (22) in the domain K {cc,,, . . ., M;,o} 

have the property of preserving the signs of the elements of the basis (cc,~) and let 

them satisfy the following conditions: 

1) the function 

u 6% 9 * * ._p,) = i 4+Mxl.. - ., ~1 (23) 

s=1 

is a positive-definite foim in the domain K {al,, . . . . a,,} for some positive con- 

stants AI, . . . . A,, 
2) the coefficients psk and the elements of the basis (a,,) are related by expres- 

sions (8). 
Then,if det 11 Psk 11 # 0 and if Eq. (13) has either at least one root with a positive 

real part or roots with real parts equal to zero such that the number of groups of solu- 
tions corresponding to these roots is smaller than their multiplicity, then the zero solu- 

tion of system (22) is unstable. 
We can prove this theorem simply by noting that by virtue of system (22) the total 

derivative of the linear form (19) is a positive-definite function at the points of inter- 

sectIon of the set K @,,, . . . , CS,,~I) with some sufficiently small neighborhood of the 
origin. 

Theorem 6. Let the functions cpS in the domain h satisfy the conditions 
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cp,(k Zl, - * *, qJ sigh X8 > 0 (s = 1, 2, . . .) n) 

The existence of positive constants A,, . ..) A ,, satisfying the inequalities 
* 

2 IPkJ A, + AdPdd~O (s = 2, 2, .) n) 

then implies that the zero solution of system (16) is stable. 
In fact let us set 7I 

V(zl,...,zn)= 2 A,[z,i 
s=1 

It is easy to see from system (16) that 

(24) 

(25) 

(26) 

(27) 

which proves the theorem. 

We note that relations (25) are strict inequalities when the coefficientsp,kand the 
elements of some basis {a,,} are related by expressions (8) and that all the roots of 

Eq. (13) have negative real parts. 
We also note that Theorem 6 is a modification and refinement of a certain theorem 

on stability formulated in our paper [4]. 
The following criterion of asymptotic stability is analogous to Theorem 6 and is closely 

related to one of the theorems of [5]. 

Theorem 7. If fulfillment of the conditions of Theorem 6 turns expressions (25) 

into strict inequalities and if the function ,, 

u(t, Xl, *. *, 3~~) = J$ cPs14 ~l,...r4sign~, (28) 

a=1 

is positivedefinite, then the zero solution of system (16) is asymptotically stable and 

uniform in t,, and xSo. 
Let us consider two corollaries of this theorem. 

Corollary 1. Let system.(22) be such that the functions qs (xi, . . . . z,) satisfy 

conditions (24). If the expression 

@@1, - * ‘9 xn) = jJ cps (x1, . . ., ZJsignz, (29) 
s=1 

is a homogeneous positive-definite function and if relations (25) are strict inequalities 

for some positive Al, . . . , A, , then the zero solution of system (22) is asymptotically 

stable. 

Corollary 2. let the domain of definition h of the right sides of system (16) be 

given by inequalities (4). 
If all the conditions of Theorem 7 are fulfilled in this domain, the zero solution of 

system (16) is asymptotically stable in the large and uniform in to and Zso. 
We note that by virtue of the system of differential equations under consideration, 

function (26) in this case satisfies all the conditions of the theorem on uniform asymp- 

totic stability in the large formulated in 161. 
Finally, let us consider as an example the system of differential equations 

dx,ldt =P,rcpl(51) + . . . + P,, cp,(Z,) (s = 1, 2, . . . . n) (36) 
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where P& are real constants and ‘ps (2,) are continuous and satisfy the inequalities. 

qls (5,) sign 2& > 0 for t# # 0 (8 = i, 2,..., n) (31) 

Let the coefficients of this system and the elements of some basis {a,,} be related 

by expressions (8). We then draw the following conclusions on the basis of Theorem 4 

and Corollary 2 of Theorem 7 : 
1) The system under consideration is absolutely stable if and only if all the roots 

of secular equation (13) have negative real parts. 

2) let fulfillment of the above assumptions concerning the right sides of system 

(30) imply that det 11 ps rl[ # 0. The zero solution of this system is then unstable for any 

chosen functions (Ps (2,) satisfying inequalities (31) if and only if: (a) there exists at 
least one root of Eq. (13) with a positive real part, or (b) there exist roots of this equation 

with real parts equal to zero such that the number of groups of solutions corresponding 
to these roots is smaller than their multiplici~. 
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The results of a study of the stability of the equilibrium position of a nonautonomous 
Hamiltonian system with two degrees of freedom are presented. The parametric reso- 

nance domain for the libration points is determined to within the first power of the 
eccentricity. Formulas for computing the characteristic exponents are derived. The 
resonance values of p and e for which the libration points can be unstabie inside the 

stability domains are determined. 

1. Let us consider three material points which attract each other according to New- 
ton’s law. Let the points 8 and 1 of massesmiandmamove relative to their common 


